Abstract 3912: Pre-clinical developments of the G3 Designed ankyrin repeat protein (DARPin) for \textit{in vivo} assessment of HER2 expression.

Robert Goldstein\(^1\), Berend Tolner\(^1\), Julius Leyton\(^2\), Maria Livanos\(^1\), Gaurav Bhavsar\(^1\), Kim Vigor\(^1\), Gabriela Nagy\(^3\), Steve Mather\(^4\), Andreas Plückthun\(^3\), Jane Sosabowski\(^2\), Tim Meyer\(^1\), and Kerry Chester\(^1\)

\(^1\)UCL Cancer Institute, London, United Kingdom; \(^2\)Barts Cancer Institute, London, United Kingdom; \(^3\)University of Zurich, Zurich, Switzerland; \(^4\)Barts Cancer Institute, London, United Kingdom.

Background:

Breast cancer HER2 molecular imaging can potentially identify disease relapse, inform treatment decisions and assess treatment responses. Molecular imaging relies upon achieving high tumour:blood and tumour:normal tissue ratios. The G3 DARPin is a small protein with picomolar affinity for HER2, based on the ankyrin repeat scaffold that is expressed in humans. The hexahistidine (His\(_6\)) tagged G3 DARPin labelled with \(^{99m}\)Tc(CO)\(_3\) can image HER2+ SK-OV-3 tumours [Zahnd et al. Cancer Res 2010;70:1595-605].

Alteration of the His\(_6\) tag to a negatively charged and hydrophilic histidine-glutamate (HE)\(_3\) tag can reduce background liver uptake, while enabling tag mediated purification by immobilised metal affinity chromatography [Hofstrom et al. J Med Chem 2011;54;3817-26].

We hypothesized that the biodistribution of \(^{111}\)In and \(^{125}\)I G3 DARPin could be optimised by altering the N-terminal domain.

Methods:

His\(_6\), HE\(_3\) and untagged G3 were produced in E. coli and or P. pastoris and labelled directly with \(^{125}\)I or with DOTA via a C-terminal cysteine for \(^{111}\)In. BALB/c mice were injected with 0.3 MBq of \(^{111}\)In or \(^{125}\)I G3. The optimal G3 construct was assessed with \(^{111}\)In and \(^{125}\)I in HER2+ human breast tumour (BT474)-bearing mice.

Results:

Biodistribution of the DARPins was evaluated in BALB/c mice at 4 and 24 h. Results showed that \(^{111}\)In-HE\(_3\)-G3 had lower or similar uptake to \(^{111}\)In-His\(_6\)-G3 and \(^{111}\)In-untagged-G3 in 11 different normal tissues tested. Superiority of HE\(_3\)-G3 for normal tissue uptake was also observed when the DARPins were labelled with \(^{125}\)I.

HE\(_3\)-G3 was assessed in HER2+ tumour-bearing mice. The tumour uptake for \(^{125}\)I-HE\(_3\)-G3 was approximately 2 fold higher than \(^{111}\)In-HE\(_3\)-G3 at 4 h. However, \(^{111}\)In-HE\(_3\)-G3 tumour uptake was better maintained, so that by 24 h \(^{111}\)In-HE\(_3\)-G3 tumour uptake was approximately 1.5 fold higher than \(^{125}\)I-HE\(_3\)-G3. Normal tissue uptake was generally lower.
for 111In-HE$_3$-G3 than 125I-HE$_3$-G3 at 4 h, except in the kidneys which were higher for 111In-HE$_3$-G3 throughout. At 24 h, the differences in normal tissue uptake between 111In-HE$_3$-G3 and 125I-HE$_3$-G3 were smaller. 111In-HE$_3$-G3 had faster serum clearance than 125I-HE$_3$-G3, resulting in higher normal tissue:blood ratios for all assessed tissues except stomach. As a consequence, the tumour:blood ratios for 111In-HE$_3$-G3 were the most impressive, > 150:1 at 4 h and > 300:1 at 24 h. 111In-HE$_3$-G3 microSPECT/CT imaging demonstrated tumour uptake at 2 and 4 h.

Conclusions:

N-terminal tags effect tissue biodistribution of G3. HE$_3$-G3 radiolabelled with 111In and 125I had lower uptake in normal tissues compared to untagged or His$_6$ tagged G3. 111In-HE$_3$-G3 achieved and maintained the highest tumour:blood ratios over 24 h. Based on its superiority, development will focus on the radiolabelled C-terminal cysteine DOTA conjugated HE$_3$-G3 for SPECT and PET HER2 imaging.